Arsenic transformation and volatilization during incineration of the hyperaccumulator Pteris vittata L.

نویسندگان

  • Xiu-Lan Yan
  • Tong-Bin Chen
  • Xiao-Yong Liao
  • Ze-Chun Huang
  • Jia-Rong Pan
  • Tian-Dou Hu
  • Can-Jun Nie
  • Hua Xie
چکیده

Safe incineration of harvested hyperaccumulators containing high content of heavy metals to avoid secondary environmental pollution is a problem for popularizing phytoremediation technology. The As volatilization behavior and its mechanism during incineration of Pteris vittata, an As-hyperaccumulator, was investigated. Incineration results reveal that 24% of total As accumulated by P. vittata (H-As) containing high As content (1170 mg/kg) is emitted at 800 degrees C, of which 62.5% of the total emitted As is volatilized below 400 degrees C. A study of the extended X-ray absorption fine structure (EXAFS) shows that part of As(III) was identified in the thermal decomposition residue of dried P. vittata (H-As), As2O5 + P. vittata (L-As) containing low As content (14.7 mg/kg), and As2O5 + charcoal (C) at 200 degrees C, suggesting that carbon originating from biomass incineration might catalyze As(V) reduction. This speculation was tested through thermogravimetric experiments, in which either C or P. vittata (L-As) markedly catalyzed the volatilization of pure As2O5 at low temperature. Therefore, the reduction of As(V) to As(III) is responsible for As volatilization during incineration of P. vittata below 400 degrees C. This study provides important insights into As behavior during incineration of As-hyperaccumulators, which is helpful to safely dispose harvested biomass with high As content.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Arsenic speciation, and arsenic and phosphate distribution in arsenic hyperaccumulator Pteris vittata L. and non-hyperaccumulator Pteris ensiformis L.

This study examined the roles of arsenic translocation and reduction, and P distribution in arsenic detoxification of Pteris vittata L. (Chinese Brake fern), an arsenic hyperaccumulator and Pteris ensiformis L. (Slender Brake fern), a non-arsenic hyperaccumulator. After growing in 20% Hoagland solution containing 0, 133 or 267 microM of sodium arsenate for 1, 5 or 10 d, the plants were separate...

متن کامل

Biomass reduction and arsenic transformation during composting of arsenic-rich hyperaccumulator Pteris vittata L.

BACKGROUND, AIM, AND SCOPE Composting is being proposed as a pretreatment step before disposal of metal-rich biomass after phytoextraction process. This study determined the biomass reduction and arsenic transformation during composting As-rich biomass of hyperaccumulator Chinese brake fern (Pteris vittata L.). MATERIALS AND METHODS High-As fern biomass containing approximately 4,600 mg As kg...

متن کامل

Arsenic-resistant bacteria solubilized arsenic in the growth media and increased growth of arsenic hyperaccumulator Pteris vittata L.

The role of arsenic-resistant bacteria (ARB) in arsenic solubilization from growth media and growth enhancement of arsenic-hyperaccumulator Pteris vittata L. was examined. Seven ARB (tolerant to 10 mM arsenate) were isolated from the P. vittata rhizosphere and identified by 16S rRNA sequencing as Pseudomonas sp., Comamonas sp. and Stenotrophomonas sp. During 7-d hydroponic experiments, these ba...

متن کامل

Arsenic chemistry in the rhizosphere of Pteris vittata L. and Nephrolepis exaltata L.

This greenhouse experiment evaluated the influence of arsenic uptake by arsenic hyperaccumulator Pteris vittata L. and non-arsenic hyperaccumulator Nephrolepis exaltata L. on arsenic chemistry in bulk and rhizosphere soil. The plants were grown for 8 weeks in a rhizopot with a soil containing 105 mg kg(-1) arsenic. The soil arsenic was fractionated into five fractions with decreasing availabili...

متن کامل

Bacteria from the rhizosphere and tissues of As-hyperaccumulator Pteris vittata and their role in arsenic transformation.

Arsenic (As)-resistant bacteria are abundant in the rhizosphere and tissues of As-hyperaccumulator Pteris vittata. However, little is known about their roles in As transformation and As uptake in P. vittata. In this study, the impacts of P. vittata tissue extracts with or without surface sterilization on As transformation in solutions containing 100 μg L-1 AsIII or AsV were investigated. After ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental science & technology

دوره 42 5  شماره 

صفحات  -

تاریخ انتشار 2008